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ECL, BP 163, 69131 Ecully Cedex, France

(Received 22 March 1999 and in revised form 11 December 2000)

Convective flow of molten gallium is studied in a small-aspect-ratio rectangular,
differentially heated enclosure. The three-dimensional nature of the steady flow is
clearly demonstrated by quantitative comparison between experimental temperature
measurements, which give an indication of the strength of the convective flow, and the
results of numerical simulations. The three-dimensional flow structure is characterized
by cross-flows which are an order of magnitude smaller than the main circulation, and
spread from the endwall regions to the entire enclosure when the Grashof number
is increased beyond Gr = 104. The mergence of these effects in the centre of the
enclosure leads to a complex central divergent flow structure which underpins the
observed transition to oscillatory convection.

1. Introduction
Sidewall convection in liquid metals is an important problem in the semiconductor

crystal growing process known as the Bridgman technique. In this a crucible of
molten material is slowly drawn from a furnace and solidification takes place. This
technique is of significant practical importance in the growth of high-quality materials
for optoelectronic applications as reviewed by Hill (1998). The industrial process may
involve dendrite growth and the distribution of dopants and is thus a complicated
problem. However, insights can be gained from studying the basic fluid dynamics
that result from the differential heating of the sample since other processes are
strongly influenced by the induced motion. For small temperature differences, the
convection is steady and primarily consists of a large, single circulation. The bulk
flow in a confined cavity evolves considerably for larger values of the driving force,
as the interaction between the different regions of flow becomes significant. Thus, the
mechanisms underlying the transitions to time-dependent and eventually turbulent
flow are often complex. We refer to the review article by Müller & Ostrogorsky (1993)
for a discussion of convective effects in crystal growth.

Our model Bridgman configuration consists of a rectangular, insulated enclosure
of square cross-section where the ends are conducting. It contains liquid gallium and
is heated and cooled in a controlled way at the two opposite ends. A schematic
diagram of the geometry is presented in figure 1. We have chosen to investigate this
relatively narrow configuration because of its practical relevance and we find that
cross-flows are important since the onset of time dependence is essentially different
to that studied in two-dimensional models.
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Figure 1. Schematic diagram of the geometry. The XY -, Y Z- and XZ-planes correspond to the
central cross-sections orthogonal to the z-, x- and y-axes respectively.

The main parameter that governs the convective flow is the Grashof number, Gr,
which measures the relative importance of buoyancy and viscous forces, and hence
is proportional to the applied temperature difference. The aspect ratios, Ax and Ay ,
correspond respectively to the length and width of the enclosure scaled by its height
and they are chosen so that the enclosure has relative dimensions of 4× 1 × 1. The
metal gallium is liquid above 29.8 ◦C and its Prandtl number, Pr, is very small with
a typical value of Pr ≈ 2.5× 10−2. Hence, most of the heat transport takes place by
conduction.

Initial theoretical research on this problem is reported by Hart (1972) who derived
an analytical solution for the simplified problem of parallel flow in an infinite layer
of fluid, subject to a horizontal temperature gradient. This solution is commonly
referred to as the Hadley circulation. Cormack, Leal & Imberger (1974) extend Hart’s
approach and calculate an asymptotic solution for the limiting case of a shallow
two-dimensional cavity, where ε = A−1

x tends to zero. They find a buoyancy-driven,
parallel flow which is moderated by viscous effects along the length of the cavity. In
addition, the role of the end regions is limited to the recirculation of the fluid.

Cormack et al.’s approach is developed further by Bejan & Tien (1978a) for the more
general case of a two-dimensional cavity of finite aspect ratio. They investigate three
different flow regimes which are encountered for increasing values of the Rayleigh
number, Ra = GrPr. In the conductive regime, the flow is parallel and satisfactorily
described by the solution of Cormack et al. (1974). In the intermediate regime, the
region over which the flow is parallel shrinks in length. The temperature profile
between the endwalls is linear with a rise and fall close to the hot and cold endwalls
respectively. The boundary layer regime takes place for large values of the Rayleigh
number, where the greatest changes in temperature are confined to thin boundary
layers adjacent to the endwalls. Bejan & Tien (1978b) consider a slow convective flow
in a horizontal, cylindrical enclosure, where differential heating is applied between
the endwalls, and obtain an analytical expression for the three-dimensional flow.
Interesting three-dimensional second-order effects arise from the coupling between
temperature and velocity field as a result of the non-slip boundary conditions on
the walls. These analyses assume a Prandtl number of order unity or larger, whereas
Hart (1983a) shows that the existence of parallel flow in a two-dimensional geometry
is restricted by the onset of secondary vortices at Gr ≈ 4.8 × 103 for Ax = 4.0
and Pr = 2.5 × 10−2. His work is extended by Daniels, Blythe & Simpkins (1987)



Three-dimensional free convection in molten gallium 269

who determine the range of Rayleigh and Prandtl numbers where this imperfect
bifurcation takes place.

Existing theoretical predictions of the stability of the flow are derived from two-
dimensional models. The linear stability of the Hadley circulation to both transverse
and longitudinal disturbances is considered by Hart (1972, 1983b) and to longitudinal
disturbances by Gill (1974). The results of Hart are refined and extended by Laure
(1987), Laure & Roux (see Roux 1990) and Kuo & Korpela (1988) who find that the
first transition is to a steady, transverse roll solution for Pr < 3.4×10−2. Laure (1987)
also performs a weakly nonlinear stability analysis and shows that the co-rotating
rolls solution is locally stable.

The simulation of convective flow in a cavity of aspect ratio Ax = 4.0 and for
Prandtl numbers Pr = 0 and 1.5 × 10−2 was proposed as a ‘benchmark’ exercise
for the GAMM workshop reported by Roux (1990). For both values of the Prandtl
number, the first transition is to stationary, co-rotating cells. Multiple flows are
encountered as the Grashof number is raised which include one, two and three
co-rotating-cell states. In addition, the flow is found to lose stability via a Hopf
bifurcation, where the solution interchanges between a one-cell and three-cell state,
as discussed by Winters (see Roux 1990).

Some contributions to the GAMM workshop include three-dimensional calcula-
tions for Ax = 4.0 and Ay = 1.0, 2.0. These are by Extremet et al., Chabbard &
Lalanne, Gervasio et al. and Henry & Buffat (see Roux 1990). Despite the limited
resolution generally achieved, they all find that the three-dimensional flow is qualita-
tively different from the two-dimensional one, and that in addition, three-dimensional
effects are significant in the entire cavity. In particular, Henry & Buffat focus on
the comparison between convective flows obtained for Ay = 1.0 and Ay = 2.0. They
consider Prandtl numbers equal to 0 and 2.6 × 10−2 and show that for Ay = 1.0
the flow consists of a single circulation for all values of the Grashof number. On
the other hand for Ay = 2.0, a three-cell flow develops for increasing Gr and this is
more in accord with the results of two-dimensional calculations. A more recent study
by Henry & Buffat (1998) concentrates on the Ay = 2.0 geometry by drawing a de-
tailed comparison with two-dimensional flows both for the steady and time-dependent
regimes.

In contrast with the significant amount of analytical and numerical research dis-
cussed above, experimental work on convective flow in low Prandtl number fluids
remains sparse. An early study of sidewall convection in molten gallium is reported
by Hurle, Jakeman & Johnson (1974). Their motivation is the control of striation
growth in crystals and hence the investigation is primarily focused on the onset
of time-dependent flow. However, they also find that in a cavity of aspect ratios
Ax × Ay = 2.7× 1.2, the flow consists of a steady, single convective circulation for a
relatively high value of the Grashof number of 1.0 × 105. This flow is clearly three-
dimensional in nature and in addition, it is left–right asymmetric. Hung & Andereck
(1988) discuss temperature measurements of the flow of mercury in a cavity of large
aspect ratios equal to Ax × Ay = 17.9 × 17.8. They find that the first transition is to
stationary rolls in qualitative agreement with the weakly nonlinear stability analyses
of Laure (1987) and Kuo & Korpela (1988). A comparison is reported by Derebail
& Koster (1997) between x-ray visualizations of the temperature field in a cavity
of aspect ratios Ax × Ay = 1.4 × 0.06 and two- and three-dimensional numerical
simulations which clearly shows that the convective flow is three-dimensional in this
narrow geometry.

Braunsfurth et al. (1997) report a study of steady convective flow in cavities of
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aspect ratios Ax × Ay = 3.0 × 1.0 and 4.0 × 1.0. Their results show that the flow
appears to be primarily two-dimensional for small values of Gr by means of a direct
comparison between experimental temperature measurements and one- and two-
dimensional models. In addition, they find that the variation of temperature across
the width of the cavity is equal to approximately 3% of the applied temperature
gradient which suggests that three-dimensional effects are small.

In comparative studies of a related problem undertaken by Schiroky & Rosen-
berger (1984), Smutek et al. (1985) and Bontoux et al. (1986), the nature of free
convective flow is investigated in a gas-filled, cylindrical cavity of aspect ratio 5.0,
where the Prandtl number is Pr = 7.3 × 10−1. Using laser Doppler anemometry,
Schiroky & Rosenberger (1984) observe that part of the fluid diverges and drops
along the sidewalls at a considerable distance from the cold endwall, thus generat-
ing a complex three-dimensional secondary flow. The three-dimensional numerical
modelling of Smutek et al. (1985) confirms that complex three-dimensional structures
are formed when the Rayleigh number exceeds 3.6 × 103. They do not, however,
present a detailed description of the flow mechanisms involved. Finally, Bontoux
et al. (1986) obtain excellent agreement between experimental measurements and
three-dimensional numerical simulations over a wide range of Rayleigh numbers,
whereas they find significant qualitative differences with two-dimensional analytical
and numerical results both in the core-driven and the boundary-layer-driven regimes.

In this paper, we present a combined experimental and numerical study of the
convective flow of liquid gallium in a differentially heated, rectangular enclosure of
aspect ratios Ax × Ay = 4.0× 1.0. The model equations and mathematical techniques
are briefly described in § 2 and experimental details are presented in § 3. In § 4.1,
a comparison between experimental measurements and two- and three-dimensional
direct numerical simulations over an extended range of Grashof numbers clearly indi-
cates the importance of three-dimensional flow mechanisms. Significant discrepancies
between the spatial structure of the experimental flow and the three-dimensional
simulations are also discussed. An interesting novel three-dimensional flow structure
is described in § 4.2, which is specifically observed for non-zero values of the Prandtl
number and underpins the observed transition to time-dependence of the convective
flow.

2. Mathematical model and numerical techniques
The mathematical model consists of a rectangular, insulating enclosure of square

cross-section filled with gallium. It has aspect ratios Ax = l/h = 4.0 and Ay = w/h =
1.0, where l is the length of the cavity, h is its height and w its width, as shown
schematically in figure 1. The endwalls are isothermal and held at Tc and Th, where
the suffixes c and h correspond to cold and hot respectively. Thus, a horizontal
temperature gradient is applied and this drives a convective circulation within the
cavity.

We will refer to different cross-sections of the enclosure, in order to describe both
the numerical and experimental flows. We denote by XY , Y Z and XZ cross-sections
the planes which are perpendicular to the z-, x- and y-axes respectively. Examples of
three cross-sections, centred on x = Ax/2, y = 0 and z = 0 can be seen in figure 1.
These will commonly be referred to as the central cross-sections.

The free convection problem is modelled by the Navier–Stokes equations coupled to
an energy equation and subject to the Boussinesq approximation. The characteristic
scales chosen to non-dimensionalize the equations are h, ν/h, h2/ν, ρν2/h2 and
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γ = (Th−Tc)/Ax, where ν is the kinematic viscosity and ρ the density. They represent
respectively length, velocity, time, pressure and temperature scales. Thus, in the usual
notation, the equations take the following form:

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇)u = −GrTg− ∇p+ ∇2 u, (2.2)

∂T

∂t
+ (u · ∇)T = Pr−1∇2 T , (2.3)

with boundary conditions

∂T/∂z = 0 on z = ±1/2, and ∂T/∂y = 0 on y = ±1/2,

T = 0 on x = 0, and T = Ax on x = Ax,

and

u = 0 on all boundaries.

Under these conditions, the value of the pressure is not unique. Thus, its absolute
value is set to zero at a convenient point within the cavity.

The scaling of the governing equations naturally leads to expressions for the
Grashof number, Gr = βγgh3/ν2 and the Prandtl number, Pr = ν/κ, where β is the
coefficient of thermal expansivity and κ the thermal diffusivity.

The governing equations were computed on a three-dimensional domain using a
spectral element method where the spatial discretization has been carried out using
31 × 15 × 15 Gauss–Lobatto–Legendre collocation points. A detailed description of
the methods and their implementation in MHD convection flows can be found in
Ben Hadid & Henry where the accuracy of the methods is also discussed. The two-
dimensional numerical simulations were run on a 32×12 mesh using the finite element
method described by Braunsfurth et al. (1997).

3. Experimental apparatus
The experimental setup is similar to that described in Braunsfurth et al. (1997),

and a schematic diagram of its central part is shown in figure 2. The sample of liquid
gallium was held in an insulating rectangular channel which formed the bottom and
lateral boundaries of the enclosure. It was machined in pyrophelite, a ceramic whose
thermal conductivity is 29 times smaller than that of gallium. A non-conducting
ceramic lid provided a rigid upper boundary. The channel was fitted between two
1 mm thick sheets of molybdenum, which is a good conductor and is also impervious
to attack by gallium. Each endwall was the side of a copper box of capacity 0.7 l,
containing silicone oil, whose temperature was held constant to within 0.05 ◦C by
a commercial temperature controller. The convection cell was embedded within a
layer of insulating material and the experiment was further enclosed in an air cabinet
whose temperature was held constant at 32± 0.5 ◦C. In particular, these precautions
ensured that good uniformity and stability of the applied temperature at the two
endwalls of the container were achieved.

An experimental procedure similar to that reported by Juel et al. (1999) was em-
ployed. The local temperature was measured with a type K insulated thermocouple
of diameter 0.25 mm which was accurately positioned within the melt using a micro-
manipulator. The precision achieved in the measurement of relative temperatures was
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Figure 2. Schematic diagram of the central part of the experimental setup (from Braunsfurth et al.
1997). The inner dimensions of the convection cell are 50.8 mm in length, 12.7 mm in depth, and
12.8 mm in width.

better than ±0.01 ◦C and care was taken to ensure that the probe did not perturb the
convective flow.

The vertical temperature difference Θ, measured at a given location in the cavity, is
of particular interest since it provides a measure of the amount of heat transferred by
convection. Gallium is a metal and hence heat is mainly transported by conduction.
The convective heat flow is relatively weak and is associated with motion of hot liquid
in the top half of the container, progressing from the hot end to the cold, and vice
versa in the bottom half. Convection is evident in the form of a moderate dependence
of the temperature on the vertical coordinate z, which indicates thermal stratification.
Estimates of Θ were obtained by measuring the amplitude of vertical temperature
profiles which were sampled at selected locations within the cavity.

The steady flow investigation was carried out for mean temperatures of between
32.2 ◦C and 40.6 ◦C and applied temperature differences of between 0.15 ◦C and
10.6 ◦C, corresponding to Grashof numbers of between 9.0 × 103 and 6.9 × 104.
The accurate determination of the absolute value of the experimental parameters
relies on precise knowledge of the material properties in order to make quantitative
comparisons with the numerical calculations. The data on the physical properties of
molten gallium are sparse and their dependence on temperature is not well known. The
available data were collected from a number of sources and discussed by Braunsfurth
et al. (1997) as a function of temperature. At 37 ◦C, the thermal conductivity is
k = 29.1± 4 W m−1 K−1, the dynamic viscosity is η = 2.06× 10−3 kg m−1 s−1 and the
density is ρ = 6.112× 103 kg m−3. An average of the literature values for the specific
heat of gallium yields cp = 0.36 ± 0.03 kJ kg−1 K−1 and the thermal expansion at
29.85 ◦C is β = 1.3× 10−4 K−1. The Prandtl number is known to within a systematic
uncertainty of 16% which is essentially due to lack of knowledge of the thermal
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conductivity. This systematic uncertainty is of little importance when comparing one
set of experimental measurements with another, as the reproducibility of these results
over a period of several months suggests that the sample of gallium retains its purity.

4. Results
4.1. Comparison between the experimental flow and the numerical models

The vertical temperature difference within the flowing layer of gallium was measured
by recording vertical temperature profiles in the centre of the enclosure (x = 2.0,
y = 0), for Grashof numbers up to Gr = 6.9 × 104 and a Prandtl number of
Pr = 2.5×10−2. This measurement is well suited for direct comparison with two- and
three-dimensional numerical simulations of the idealized system.

The amplitude of the vertical temperature profiles is plotted as a function of the
Grashof number in figure 3. The experimental data are shown as symbols, whereas
the two- and three-dimensional numerical results are drawn with solid and dashed
lines respectively. Most of the experimental data points for Gr up to 4.6 × 104 in
figure 3 are taken from Braunsfurth et al. (1997) and all the higher values are new.
The calibration of the experiment was subsequentially improved, and hence more
accurate values of the Grashof number are presented in this paper, which are slightly
different from those in figure 8 of Braunsfurth et al. (1997). The Prandtl number
used in the calculations was set to Pr = 2.5 × 10−2. Calculations performed at
Pr = 3.0× 10−2 resulted in a similar Grashof number dependence, with the absolute
values of the vertical temperature differences slightly higher in both the two- and
three-dimensional cases. The three-dimensional result is included in figure 3 with a
dotted line (the two-dimensional curve is omitted for clarity).

There is excellent qualitative agreement between the experimental data and those
from the three-dimensional calculations for the dependence of convective heat trans-
port on Grashof number. For values of the Grashof number smaller than approx-
imately Gr ≈ 3.0 × 104, the three-dimensional values of the vertical temperature
difference are systematically below the two-dimensional ones. This is to be expected
since the flow is bounded by the non-slip sidewalls, which damp the main convec-
tive circulation. All the numerical curves show an approximately linear dependence
on the Grashof number, for Gr < 1.0 × 104. However it should be noted that the
two-dimensional slope is steeper due to higher velocities in the two-dimensional con-
figuration. Hence, the importance of three-dimensional effects can be quantified even
for very low values of the Grashof number.

The three-dimensional data intersect with the two-dimensional curve at approxi-
mately Gr ≈ 3.0 × 104. Both sets of data then diverge when the Grashof number
is further increased. This indicates that there are considerable qualitative differences
between the flow fields in these two models. In the two-dimensional configuration,
a transition from a parallel flow to one with co-rotating cells is found, whereas in
the three-dimensional case, the flow consists of a large single convective circulation,
for all the studied values of the Grashof numbers. Also, the strength of the con-
vective flow saturates in the two-dimensional model whereas it continues to increase
in both the experiment and three-dimensional numerical results. This increase for
Gr > 3.0× 104 is interesting, since it clearly reflects the three-dimensional complexity
of the steady flow. As will be discussed in § 4.2, it results from the appearance of
secondary cross-flows within the core of the cavity.

Although the experimental results shown in figure 3 qualitatively agree with the
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Figure 3. Vertical temperature difference in the centre of the enclosure (x = 2.0 and y = 0)
versus Grashof number. The experimental measurements are plotted with diamonds, the two- and
three-dimensional numerical simulations for Pr = 2.5 × 10−2 are plotted with solid and dashed
lines respectively. The dotted line corresponds to three-dimensional numerical data calculated for
Pr = 3.0× 10−2. The dots on each line are the points for which calculations were performed.

three-dimensional data, they mainly lie above the dashed line of numerical predictions.
However, the three-dimensional calculation for Pr = 3.0 × 10−2 (dotted line) closely
follows the experimental set of data and is therefore a good guide to the eye.
The quantitative difference between experiment and three-dimensional calculations
is larger than the uncertainties in the flow parameters such as the Prandtl number.
Hence, its origin is to be sought in the difference between the ideal flow model
computed and the real flow investigated in the laboratory.

The dependence of the vertical temperature difference on the lengthwise position
within the cavity was next investigated. Whereas the steady model flows are axi-
symmetric (invariant by rotation of π about the central y-axis), the experimental
measurements exhibited an asymmetry such that the maximum vertical temperature
difference was located at approximately x = 3.0, as shown in figure 4. Further
measurements of time-averaged values of Θ for higher values of the Grashof number
(9.8× 104 and 1.3× 105, where the flow was time-dependent and disordered) yielded
the same dependence on x as in figure 4, hence confirming the robustness of the
observed asymmetry.

Additional experiments showed that the location of the maximum vertical tem-
perature difference, i.e. the centre of the convective circulation, was found to move
when the ambient temperature of the surrounding cabinet was changed. Specifically,
Θmax was shifted from x = 3.0 to x = 1.0 when the background temperature was
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Figure 4. Vertical temperature difference versus the lengthwise coordinate x: comparison between
experimental measurements for a background temperature of 32 ◦C, equal to that of the cold
endwall (Gr = 4.2×104 and Pr = 2.5×10−2) and two- and three-dimensional numerical simulations
(Gr = 4.0× 104 and Pr = 3.0× 10−2).

raised by ∆T (on the order of 10 ◦C), from the temperature of the cold endwall to
the temperature of the hot endwall. However, symmetry about y = 0 was retained for
all the values of the Grashof number shown in figure 3, for which the experimental
flow was found to be steady.

These findings were all the more surprising as great care was taken in insulating
the experimental convection cell from the ambient. Specifically, attempts were made
to quantify heat losses on the outer walls of the enclosure with thermochromic liquid
crystals and infrared measurements, but neither technique suggested a significant
effect. Thus, the flow must be very sensitive to small imperfections in the thermal
boundary conditions. On the other hand, the good qualitative agreement between
numerical simulations and experiment for the dependence of convective heat transfer
on Grashof number shows that the global features of the steady flow are robust. It
is these aspects that are most likely to be of relevance in practical crystal growth
facilities.

4.2. Three-dimensional flow and transition to time-dependence

The main convective circulation takes place in the plane of the two-dimensional
geometry (central XZ-plane). In the three-dimensional simulations, the maximum
transverse velocity v is typically an order of magnitude smaller than the longitudinal
component u. For Pr = 2.5 × 10−2, v = 6.69 × 10−2 (3.07 × 10−1) for Gr = 1.0 ×
104 (7.0 × 104) versus u = 7.03 × 10−1 (1.22) and w = 3.59 × 10−1 (6.48 × 10−1).
Similarly, Braunsfurth et al. (1997) measured a transverse temperature variation



276 A. Juel, T. Mullin, H. Ben Hadid and D. Henry

y
x

z

–0.00472

+0.00472

–0.0672

+0.0672

–0.302

+0.302

(a)

(b)

(c)

Figure 5. Plot of transverse velocity contours on the XY -plane at z = 0: (a) Gr = 1.0 × 103, (b)
Gr = 1.0 × 104 and (c) Gr = 7.0 × 104. The Prandtl number is set to Pr = 3.0 × 10−2. In (d) the
arrows indicate the direction of the cross-flows.

of approximately only 3% of the applied temperature difference. Thus, one may
be tempted to conclude that the flow in a confined enclosure is practically two-
dimensional in nature. However, the results of figure 3 show convincing evidence of
the importance of three-dimensionality even for the smallest values of the Grashof
number.

Evidence of three-dimensional cross-flows is primarily found close to each endwall,
where the fluid particles in the upper layer, that are travelling from the hot to the
cold end, progressively diverge towards the sidewalls, symmetrically on either side
of the central XZ-plane as they approach the cold endwall (from approximately
x = 0.1). This results in a strong divergence of the flow in the y-direction in the
upper two-thirds of the enclosure. Thus, the descending flow rate is larger on either
side of the central XZ-plane than it is close to the centreline. This is because the
velocity profile in the upper layer is close to parabolic so that the speed is larger in
the central part of the cavity than close to the non-slip sidewalls. A stagnation point
is formed halfway across the upper half of the cold endwall with a slight depression
on either side of this point. Hence, a divergence of the fluid towards the sidewalls
is favoured rather than a close approach of the endwall and a straight descent. The
same mechanism is observed in the bottom layer at the cold endwall.

In figure 5, contours of transverse velocity (v) are shown in the XY -mid-plane,
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Figure 6. Plot of velocity vectors projected onto the Y Z-plane at x = 2.0: (a) Gr = 1.0 × 103, (b)
Gr = 1.0 × 104, (c) Gr = 2.0 × 104, (d) Gr = 3.0 × 104, (e) Gr = 5.0 × 104 and (f) Gr = 7.0 × 104.
The Prandtl number is set to Pr = 3.0× 10−2.

viewed from above, for three values of the Grashof number, Gr = 1.0× 103, 1.0× 104

and 7.0× 104. The dashes (solid) contours correspond to negative (positive) velocities
respectively. The regions of divergent flow in the vicinity of the endwalls are clearly
observed in all three cases, including for the very small value of Gr = 1.0 × 103.
However, cross-flows are not restricted to the close vicinity of the endwalls and
evolve significantly as the Grashof number is raised. Between Gr = 1.0 × 103 and
Gr = 1.0 × 104, regions of convergent flow, initially adjacent to the divergent flows
at the endwalls, extend into the centre of the cavity. In fact these convergent flows
which underpin global spiralling motions from the sidewalls towards the central
XZ-plane were previously reported by Henry & Buffat (1998). For Gr = 1.0 × 104,
the cross-flows from the cold and hot halves of the enclosure have spread to the
centre of the XY -mid-plane and the strengthening of the interaction between these
convergent flows leads to the appearance of a central region of divergent flow for
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Figure 7. For caption see facing page.

Gr = 7.0× 104. Although the flow retains its large, single circulation in the plane of
the two-dimensional geometry (central XZ-plane), the complex cross-flow dynamics
mentioned above are indicated by a localized, central region of shear.

A detailed sequence of the above transition is shown in figure 6 with a set of
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velocity fields calculated for Grashof numbers between Gr = 1.0× 104 and 7.0× 104,
that are projected onto the central Y Z-plane. The cross-flows can then be clearly
observed since the main circulation is in the x-direction. The same scale is used in
each plot. The second-order transverse flow predicted by Bejan & Tien (1978b) is only
observed for very small values of the Grashof number on the order of Gr = 1.0×103.
For Gr = 1.0× 104, the convergent flows described above have spread into the centre,
so that the vectors are all pointing towards the centre point of the Y Z-mid-plane.
Of course, it should be remembered that the plot is a projection, which actually
depicts a three-dimensional flow process with a strong velocity component in the
x-direction. Also, the projected velocity field can be separated into four symmetric
quadrants, separated by horizontal and vertical velocity vectors which are oriented
towards the centre. When the Grashof number is raised to Gr = 2.0×104, the form of
the velocity distribution does not change although the mean velocity of the cross-flow
increases. For Gr = 3.0 × 104, the flow along the vertical boundary line remains
oriented towards the centre. On the horizontal line however, the velocity vectors are
now mainly directed towards the centre, although close to the mid-point a weak
divergent flow has appeared. Thus a qualitative change in the velocity distribution
on the central Y Z-plane has taken place between Gr = 2.0× 104 and Gr = 3.0× 104.
This can be observed in figures 6(d) and 6(e), where the divergent flow is found to
strengthen and also develops across the width of the cavity. This results in the creation
of a three-dimensional hyperbolic point in the centre of the Y Z-plane. Finally, in
figure 6(f) for Gr = 7.0× 104, the divergent horizontal flow occupies the entire width
of the cavity and it has also spread vertically. Furthermore, it clearly dominates the
three-dimensional recirculation structure at this location.

The fundamental role of the cross-flows in the structure of the convective flow
is further emphasized in the transition to time-dependence. Oscillatory convection
is observed for Gr = 8.0 × 104 and Pr = 2.5 × 10−2, where the central divergent
cross-flow structure depicted in figures 6(c) and 6(f) is destabilized to an oscillatory
motion along the length of the cavity.

Although the coupling between flow field and temperature field is weak, it still
plays an essential role in determining the nature of the flow, since the convective
dynamics computed for Pr = 2.5 × 10−2 and Pr = 0 are fundamentally different.
For Pr = 0, a complicated cross-flow structure is also formed but it remains for
the most part localized in the endwall regions, so that interactions between cross-
flows halfway along the length of the enclosure are negligible. Thus, the divergent
cross-flow structure seen in figures 6(c) and 6(f) is not formed, and a time-dependent
calculation for Gr = 8.5×104 indicates that oscillations of the three-dimensional flow
are primarily in the transverse (y) direction (see Henry & Buffat 1998 for related
results on the 4 × 2 × 1 enclosure). Hence, it is essential to simulate the convective

Figure 7. Top: Schematic of the sampling locations: A, B, C, D, E and F are located at
(x, y, z) = (2.0, 0.5, 0.4), (1.0, 0.5, 0.4), (3.0, 0.5, 0.4), (2.0, 0.5,−0.3), (2.0,−0.5, 0.4) and (2.0, 0, 0.4) re-
spectively. Below: Comparison between extracts of time series recorded at A (solid line) and other
locations (dashed line): (a) B, (b) C, (c) D, (d) E and (e) F. The flow parameters are Gr = 5.44× 104

and Pr = 1.97× 10−2. Note that the critical Grashof number in this experiment (Grc = 5.37× 104)
is small compared with that estimated from the three-dimensional numerical simulations (between
Grc = 7.0× 104 and 8× 104) for Pr = 2.5× 104 and Ay = 1.0. This is to be expected since the value
of Pr is reduced in this experiment and Ay is increased to 1.3. The phase relationships exhibited in
these plots suggest that the experimental oscillations at onset correspond to a standing wave across
the width of the enclosure.
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flow at finite values of the Prandtl number if comparison with experiment is to be
made.

Interestingly, in the experiment a robust onset of singly periodic oscillations could
not be achieved in the 4× 1× 1 enclosure, and a direct transition from steady flow to
intricate and noisy dynamics was observed. However, when the width to depth ratio,
Ay , was raised to 1.3 by increasing the thickness of the lid (which also raised Ax to
5.0), the transition to time-dependence took place through a simple Hopf bifurcation.
Extracts of time series are shown in figure 7, that were sampled close to onset in
several locations along the walls of the enclosure such as to minimize disturbances on
the flow. The location of all the thermocouple probes are shown schematically in the
top part of figure 7. The signal sampled at location A, halfway along the length of
the cavity consistently had the largest amplitude for increasing values of the Grashof
number. All the temperature traces sampled on the same sidewall (at locations B, C
and D) are in phase with A, whereas the signal sampled on the opposite sidewall, at
location E, is π out of phase with A. In addition, the signal at location F, halfway
across the width of the enclosure, is an order of magnitude smaller than for the
sidewall locations, and approximately π/2 out of phase with A. Hence, the observed
oscillations correspond to a transverse, standing wave, with at least one central node.

The evidence presented in this section points to the importance of three-dimensional
effects in the transition to oscillatory flow in both the experiment and the numerical
simulations, although the nature of the oscillations is different in each case. However,
such a discrepancy is to be expected, since the transition to oscillatory flow takes
place for relatively high Grashof numbers, in a regime where the bulk flow is fully
established. Thus, the flow mechanisms are strongly nonlinear, so that small differences
between the experiment and the model can be substantially amplified.

5. Conclusion
We have provided convincing numerical and experimental evidence for the impor-

tance of three-dimensional effects in free convective flow of liquid gallium in a rectan-
gular enclosure of moderate aspect ratios. Agreement has been demonstrated between
experimental measurements and three-dimensional simulations of the convective heat
transfer over an extended range of Grashof numbers, for which the convective flow
is steady. Complex three-dimensional flow processes were shown to be essential in es-
tablishing the steady flow for all values of the applied temperature gradient, although
the intensity of the cross-flows was typically of an order of magnitude smaller than
the main two-dimensional circulation. Additional numerical calculations suggested
the complex flow structure uncovered in the centre of the cavity to be of great im-
portance in the transition to time-dependent flow, and the onset of oscillations in the
experiment took the form of a standing wave across the width of the enclosure.
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